Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration
نویسندگان
چکیده
Giant planets found orbiting close to their central stars, the so-called ‘hot Jupiters’, are thought to have originally formed in the cooler outer regions of a protoplanetary disk and then to have migrated inward via tidal interactions with the nebula gas. We present the results of N–body simulations which examine the effect such gas giant planet migration has on the formation of terrestrial planets. The models incorporate a 0.5 Jupiter mass planet undergoing type II migration through an inner protoplanet–planetesimal disk, with gas drag included. Each model is initiated with the inner disk being at successively increased levels of maturity, so that it is undergoing either oligarchic or giant impact style growth as the gas giant migrates. In all cases, a large fraction of the disk mass survives the passage of the giant, either by accreting into massive terrestrial planets shepherded inward of the giant, or by being scattered into external orbits. Shepherding is favored in younger disks where there is strong dynamical friction from planetesimals and gas drag is more influential, whereas scattering dominates in more mature disks where dissipation is weaker. In each scenario, sufficient mass is scattered outward to provide for the eventual accretion of a set of terrestrial planets in external orbits, including within the system’s habitable zone. This scattering, however, significantly reduces the density of solid material, indicating that further accretion will occur over very long time scales. A particularly interesting result is the generation of massive, short period, terrestrial planets from compacted material pushed ahead of the giant. These planets are reminiscent of the short period Neptune-mass planets discovered recently, suggesting that such ‘hot Neptunes’ could form locally as a by-product of giant planet migration.
منابع مشابه
Lunar and terrestrial planet formation in the Grand Tack scenario.
We present conclusions from a large number of N-body simulations of the giant impact phase of terrestrial planet formation. We focus on new results obtained from the recently proposed Grand Tack model, which couples the gas-driven migration of giant planets to the accretion of the terrestrial planets. The giant impact phase follows the oligarchic growth phase, which builds a bi-modal mass distr...
متن کاملTerrestrial planet formation in low eccentricity warm – Jupiter systems
Context. Extrasolar giant planets are found to orbit their host stars with a broad range of semi-major axes 0.02 ≤ a ≤ 6 AU. Current theories suggest that giant planets orbiting at distances between ≃ 0.02 – 2 AU probably formed at larger distances and migrated to their current locations via type II migration, disturbing any inner system of forming terrestrial planets along the way. Migration p...
متن کاملThe Search for Other Earths: Limits on the Giant Planet Orbits That Allow Habitable Terrestrial Planets to Form
Gas giant planets are far easier than terrestrial planets to detect around other stars, and are thought to form much more quickly than terrestrial planets. Thus, in systems with giant planets, the late stages of terrestrial planet formation are strongly affected by the giant planets’ dynamical presence. Observations of giant planet orbits may therefore constrain the systems that can harbor pote...
متن کاملFormation of Earth-like Planets during and after Giant Planet Migration
Close-in giant planets are thought to have formed in the cold outer regions of planetary systems and migrated inward, passing through the orbital parameter space occupied by the terrestrial planets in our own Solar System. We present dynamical simulations of the effects of a migrating giant planet on a disk of protoplanetary material and the subsequent evolution of the planetary system. We nume...
متن کاملOn the formation of terrestrial planets in hot–Jupiter systems
Context. There are numerous extrasolar giant planets which orbit close to their central stars. These ‘hot-Jupiters’ probably formed in the outer, cooler regions of their protoplanetary disks, and migrated inward to ∼ 0.1 AU. Since these giant planets must have migrated through their inner systems at an early time, it is uncertain whether they could have formed or retained terrestrial planets. A...
متن کامل